Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 288, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948911

RESUMO

BACKGROUND: The incidence of tick-borne disease has increased dramatically in recent decades, with urban areas increasingly recognized as high-risk environments for exposure to infected ticks. Green spaces may play a key role in facilitating the invasion of ticks, hosts and pathogens into residential areas, particularly where they connect residential yards with larger natural areas (e.g. parks). However, the factors mediating tick distribution across heterogeneous urban landscapes remain poorly characterized. METHODS: Using generalized linear models in a multimodel inference framework, we determined the residential yard- and local landscape-level features associated with the presence of three tick species of current and growing public health importance in residential yards across Staten Island, a borough of New York City, in the state of New York, USA. RESULTS: The amount and configuration of canopy cover immediately surrounding residential yards was found to strongly predict the presence of Ixodes scapularis and Amblyomma americanum, but not that of Haemaphysalis longicornis. Within yards, we found a protective effect of fencing against I. scapularis and A. americanum, but not against H. longicornis. For all species, the presence of log and brush piles strongly increased the odds of finding ticks in yards. CONCLUSIONS: The results highlight a considerable risk of tick exposure in residential yards in Staten Island and identify both yard- and landscape-level features associated with their distribution. In particular, the significance of log and brush piles for all three species supports recommendations for yard management as a means of reducing contact with ticks.


Assuntos
Ixodes , Ixodidae , Picadas de Carrapatos , Doenças Transmitidas por Carrapatos , Animais , Humanos , Cidade de Nova Iorque/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia
2.
PLoS Negl Trop Dis ; 16(3): e0009525, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294445

RESUMO

Changes in land-use and the associated shifts in environmental conditions can have large effects on the transmission and emergence of mosquito-borne disease. Mosquito-borne disease are particularly sensitive to these changes because mosquito growth, reproduction, survival and susceptibility to infection are all thermally sensitive traits, and land use change dramatically alters local microclimate. Predicting disease transmission under environmental change is increasingly critical for targeting mosquito-borne disease control and for identifying hotspots of disease emergence. Mechanistic models offer a powerful tool for improving these predictions. However, these approaches are limited by the quality and scale of temperature data and the thermal response curves that underlie predictions. Here, we used fine-scale temperature monitoring and a combination of empirical, laboratory and temperature-dependent estimates to estimate the vectorial capacity of Aedes albopictus mosquitoes across a tropical forest-oil palm plantation conversion gradient in Malaysian Borneo. We found that fine-scale differences in temperature between logged forest and oil palm plantation sites were not sufficient to produce differences in temperature-dependent demographic trait estimates using published thermal performance curves. However, when measured under field conditions a key parameter, adult abundance, differed significantly between land-use types, resulting in estimates of vectorial capacity that were 1.5 times higher in plantations than in forests. The prediction that oil palm plantations would support mosquito populations with higher vectorial capacity was robust to uncertainties in our adult survival estimates. These results provide a mechanistic basis for understanding the effects of forest conversion to agriculture on mosquito-borne disease risk, and a framework for interpreting emergent relationships between land-use and disease transmission. As the burden of Ae. albopictus-vectored diseases, such as dengue virus, increases globally and rising demand for palm oil products drives continued expansion of plantations, these findings have important implications for conservation, land management and public health policy at the global scale.


Assuntos
Aedes , Dengue , Animais , Bornéu , Florestas , Mosquitos Vetores
3.
Glob Chang Biol ; 28(5): 1705-1724, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34889003

RESUMO

The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.


Assuntos
COVID-19 , Pandemias , Animais , Cidades , Humanos , SARS-CoV-2 , Zoonoses/epidemiologia
4.
Proc Natl Acad Sci U S A ; 113(36): 10109-14, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551095

RESUMO

Biodiversity is widely acknowledged to influence the magnitude and stability of a large array of ecosystem properties, with biodiverse systems thought to be more functionally robust. As such, diverse systems may be safer harbors for vulnerable species, resulting in a positive association between biodiversity and the collective vulnerability of species in an assemblage, or "assemblage vulnerability." We find that, for 35 islands across Northern Melanesia, bird assemblage vulnerability and biodiversity are positively associated. This relationship is highly contingent on Pleistocene connectivity, suggesting that biogeographic history-a factor often overlooked in biodiversity and ecosystem-functioning studies-may influence contemporary ecological processes. In the face of biodiversity loss attributable to anthropogenic drivers, reduced ecosystem functioning may erode the safe harbors of vulnerable assemblages. Paradoxically, these results suggest that biodiverse systems, as more robust systems, may experience greater biodiversity loss over ecological time because they harbor more vulnerable species accumulated over evolutionary time.


Assuntos
Biodiversidade , Evolução Biológica , Aves/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Ilhas , Melanesia , Filogeografia , Dinâmica Populacional/tendências
5.
Int J Parasitol ; 45(2-3): 101-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496914

RESUMO

Observational evidence suggests that burial of faeces by dung beetles negatively influences the transmission of directly transmitted gastrointestinal helminths. However, the mechanistic basis for these interactions is poorly characterised, limiting our ability to understand relationships between beetle community composition and helminth transmission. We demonstrate that beetle body size and sex significantly impact tunnel depth, a key variable affecting parasite survival. Additionally, high parasite loads reduce the depth of beetle faeces burial, suggesting that the local prevalence of parasites infecting beetles may impact beetle ecosystem function. Our study represents a first step towards a mechanistic understanding of a potentially epidemiologically relevant ecosystem function.


Assuntos
Besouros/fisiologia , Besouros/parasitologia , Fezes/parasitologia , Comportamento Alimentar , Helmintos/fisiologia , Enteropatias Parasitárias/veterinária , Animais , Transmissão de Doença Infecciosa , Feminino , Helmintíase/transmissão , Enteropatias Parasitárias/transmissão , Gado , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...